Smart and Resilient Steel Walls for Reducing Earthquake Impacts
Most traditional seismic load resisting systems suffer structural damage during seismic events. The cost and downtime associated with repair of that damage has led to staggering economic losses. A smart and resilient steel plate shear wall (SR-SPSW) system proposed in this project could drastically reduce those losses. The system strategically combines the benefits of self-centering and steel plate shear wall technologies to create a robust, ductile, and easily repairable system that will reduce life-cycle costs for buildings.SPSWs are excellent candidates for the application of self-centering technology. They have high strength and elastic stiffness and require low re-centering forces. The buckling and yielding behavior of the web plate will also be leveraged to develop self-sensing concepts such that post-event decisions regarding web plate replacement can be made with minimal disruption. SPSW behavior under earthquake loading is highly nonlinear, and complex component interactions exist; of particular complexity are the interactions between the web plate tension field action and the forces in the re-centering mechanisms of the proposed SR-SPSWs.
Large-scale testing using advanced experimental techniques and instrumentation will generate data to be used to develop numerical models anchored in physical behavior. Application of those tools in parametric analyses of SPSW systems will provide a new level of understanding of the system response and help to eliminate overly conservative design processes.
To ensure that the new SR-SPSW system will be implemented, and to increase the use of conventional SPSW systems, this research will also seek to fill critical knowledge gaps in SPSW system behavior including the understanding of coupled SPSW behavior and the expected distribution of yielding in multistory SPSW.
No comments:
Post a Comment